初中數(shù)學(xué)常用的19種數(shù)學(xué)答題方法
解數(shù)學(xué)題,除了掌握有關(guān)的數(shù)學(xué)知識之外,一定要知道答題方法,這樣,不僅能提高答題速度,也能提高正確率,下面為大家準(zhǔn)備了初中數(shù)學(xué)常用的19種數(shù)學(xué)答題方法,希望可以幫助到大家。
常用的19種數(shù)學(xué)答題方法
1.函數(shù)
函數(shù)題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.方程或不等式
如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3.初等函數(shù)
面對含有參數(shù)的初等函數(shù)來說,在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對稱軸……
4.選擇與填空中的不等式
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.參數(shù)的取值范圍
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問題
恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7.圓錐曲線問題
圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8.曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(注意去掉不符合條件的特殊點(diǎn));
9.離心率
求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10.三角函數(shù)
三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11.數(shù)列問題
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會方程的思想;
12.立體幾何問題
立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2 ;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13.導(dǎo)數(shù)
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14.概率
概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15.換元法
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16.二項(xiàng)分布
注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17.絕對值問題
絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18.平移
與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19.中心對稱
關(guān)于中心對稱問題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對稱軸上。
常用的19種數(shù)學(xué)答題方法
1.函數(shù)
函數(shù)題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.方程或不等式
如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3.初等函數(shù)
面對含有參數(shù)的初等函數(shù)來說,在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對稱軸……
4.選擇與填空中的不等式
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.參數(shù)的取值范圍
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問題
恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7.圓錐曲線問題
圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8.曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(注意去掉不符合條件的特殊點(diǎn));
9.離心率
求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10.三角函數(shù)
三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11.數(shù)列問題
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會方程的思想;
12.立體幾何問題
立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2 ;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13.導(dǎo)數(shù)
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14.概率
概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15.換元法
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16.二項(xiàng)分布
注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17.絕對值問題
絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18.平移
與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19.中心對稱
關(guān)于中心對稱問題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對稱軸上。
相關(guān)文章:
- [初中數(shù)學(xué)]可以提高數(shù)學(xué)成績的七種方法
- [初中數(shù)學(xué)]初中數(shù)學(xué)常用的19種數(shù)學(xué)答題方法
- [初中數(shù)學(xué)]提高初中數(shù)學(xué)成績的三個(gè)步驟
- [初中數(shù)學(xué)]提高數(shù)學(xué)成績的100個(gè)好方法
- [初中數(shù)學(xué)]中考數(shù)學(xué)滿分學(xué)霸自曝6條數(shù)學(xué)學(xué)習(xí)方法
- [初中數(shù)學(xué)]如何打牢數(shù)學(xué)基礎(chǔ)_打牢數(shù)學(xué)基礎(chǔ)的五個(gè)問題
- [初中數(shù)學(xué)]提高初中數(shù)學(xué)成績的學(xué)習(xí)方法
- [初中數(shù)學(xué)]初中數(shù)學(xué)從60分到120分的逆襲技巧
- [初中數(shù)學(xué)]初中數(shù)學(xué)需要重視的七個(gè)方面和七個(gè)技巧
- [初中數(shù)學(xué)]初中數(shù)學(xué)五大學(xué)習(xí)方法指導(dǎo)
- [初中數(shù)學(xué)]如何做好小學(xué)初中數(shù)學(xué)的過渡及銜接?
- [初中數(shù)學(xué)]初中數(shù)學(xué)學(xué)習(xí)誤區(qū)及應(yīng)對辦法
- [初中數(shù)學(xué)]初中數(shù)學(xué)學(xué)習(xí)方法及復(fù)習(xí)應(yīng)試技巧
- [初中數(shù)學(xué)]如何檢查數(shù)學(xué)試卷_數(shù)學(xué)考試拿高分的5個(gè)小技巧
- [初中數(shù)學(xué)]提高初中數(shù)學(xué)計(jì)算正確率的竅門_如何提高初中數(shù)
今日推薦
- 可以提高數(shù)學(xué)成績的七種方法
- 初中數(shù)學(xué)常用的19種數(shù)學(xué)答題方法
- 提高初中數(shù)學(xué)成績的三個(gè)步驟
- 提高數(shù)學(xué)成績的100個(gè)好方法
- 中考數(shù)學(xué)滿分學(xué)霸自曝6條數(shù)學(xué)學(xué)習(xí)方法
- 如何打牢數(shù)學(xué)基礎(chǔ)_打牢數(shù)學(xué)基礎(chǔ)的五個(gè)問
- 提高初中數(shù)學(xué)成績的學(xué)習(xí)方法
- 初中數(shù)學(xué)從60分到120分的逆襲技巧
- 初中數(shù)學(xué)需要重視的七個(gè)方面和七個(gè)技巧
- 初中數(shù)學(xué)五大學(xué)習(xí)方法指導(dǎo)
熱門閱讀
- 提高初中數(shù)學(xué)成績的學(xué)習(xí)方法
- 提高數(shù)學(xué)成績的100個(gè)好方法
- 如何做好小學(xué)初中數(shù)學(xué)的過渡及銜接?
- 可以提高數(shù)學(xué)成績的七種方法
- 如何打牢數(shù)學(xué)基礎(chǔ)_打牢數(shù)學(xué)基礎(chǔ)的五個(gè)問
- 如何檢查數(shù)學(xué)試卷_數(shù)學(xué)考試拿高分的5個(gè)
- 初中數(shù)學(xué)從60分到120分的逆襲技巧
- 初中數(shù)學(xué)五大學(xué)習(xí)方法指導(dǎo)
- 初中數(shù)學(xué)常用的19種數(shù)學(xué)答題方法
- 初中數(shù)學(xué)需要重視的七個(gè)方面和七個(gè)技巧